
Example Problem

8'0" cc GIVEN: Beam Spacing Beam Flange = 10"

= 8.5" (measured to top of deck as per figure) Slab thickness

Concrete unit weigth = 150 pcf

= 8'0" - 10" - 2" = 7'0" = 7.0'Design Span

Deck Type = 2" Deep Deck

REQUIRED: Section Modulus (S) and Moment of inertia (I) for the bridge form section.

SOLUTION: Concrete weight = (8.5+1)(150)/12= 118.75 psf

> Bridge form weight 3 psf

 $= \overline{121.75 \text{ psf}} = 122 \text{ psf}$ W_d = Dead Load (deflection) Construction = 50 psf Total Load (stress) = $\overline{172 \text{ psf}}$

DEFLECTION: Calculate Required I.

1/180 = 7(12) = 0.47" 180

0.47" < ½" use 0.47"

= <u>.013(122)(7)</u> ⁴ <u>172</u>8 $= 0.475 \text{ in}^4/\text{ft. of width}$ 29.5 x 10 ⁶ (0.47)

Note: If W_d had been less than 120 psf, 120 would have been

STRESS: Determine the required S if the steel grade is 50 ksi.

= 0.725 x 50000 = 36250 use 36000 psi.

used to determine the required I.

 $M = 172(7)^2(12) = 0.351 \text{ in}^3/\text{ft}.$ 36000

8 x 36000

Note: If the steel grade were 40 ksi the allowable f would be:

 $40000 \times .725 = 29000$ the required S would be:

 $S_{reg} = 0.351 \times 36000$ $= 0.436 \text{ in}^3/\text{ft}.$

The choice of deck can influence the concrete weight. For this problem:

 $8.5 \times 150 = 106.3 \text{ psf}$

12

 $2" \times 6" C_v = .0833; .0833 \times 150 = 12.5 psf$

106.3 + 12.5 = 119 psf as used in the problem.

Using the average slab depth is usually close enough.